LAMELLENWANDSYSTEME

HOME OF OXYGEN

DUCO Ventilation & Sun Control
versorgt jedes Gebäude auf gesunde
Weise mit Sauerstoff. Mit seinem
umfangreichen Angebot an innovativen
natürlichen und mechanischen
Belüftungssystemen, die alle auf
Wunsch mit externem Sonnenschutz
kombiniert werden können, bietet
DUCO die ultimative Garantie für
ein gesundes und angenehmes
Raumklima. Die Gesundheit des

Benutzers steht daher bei DUCO im Mittelpunkt. Eine durchdachte Kombination aus Basislüftung, mechanischer Ableitung, intensiver Lüftung und Sonnenschutz sorgt für eine optimale Luftqualität. DUCO bietet für Wohnungen, Büros, Schulen und das Gesundheitswesen innovative Lösungen, in denen sich alle wohl fühlen.

DUCO, Home of Oxygen

ALLGEMEINES	4
PRODUKTE	6
DUCOWALL SOLID DucoWall Solid W 30Z	8
DUCOWALL SCREENING DucoWall Screening 35 DucoWall Screening 70	
DUCOWALL CLASSIC DucoWall Classic W 20Z DucoWall Classic W 20V DucoWall Classic W 35V DucoWall Classic W 50Z/30° DucoWall Classic W 50Z DucoWall Classic W 50/75Z DucoWall Classic W 70V DucoWall Classic W 45HP DucoWall Classic W 50HP DucoWall Classic W 130HP DucoWall Classic W 80HP DucoWall Classic W 80HP DucoWall Classic W 60C	
DUCOWALL ACOUSTIC DucoWall Acoustic W 75Z & W 75L DucoWall Acoustic W 150 & W 300	
DUCODOOR LAMELLENTÜREN DucoDoor Wall DucoDoor Louvre DucoDoor Grille	31
LÜFTUNGSHAUBEN Duco Roof Turret Solid 30Z	34
AUFPRALL- UND DURCHSTURZSICHERUNG	36
REFERENZEN	38
VERSCHIEDENES	
ServiceÜbersicht Halteprofile	

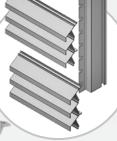
RECHTLICHE HINWEISE

Abbildungen in diesem Katalog können vom tatsächlichen Produkt abweichen. Druckfehler in und/oder Änderungen von Texten vorbehalten. DUCO behält sich das Recht vor, diese Daten jederzeit zu ändern. Die genannten Daten sind am 25.04.2024 gültig und können Änderungen der Rechtslage unterliegen.

EINE LÖSUNG FÜR **JEDE SITUATION**

→ Schnelle Montage

Mit dem patentierten "Dreh-Klick"-System von DUCO für DucoWall Classic und Acoustic werden zunächst Lamellenhalter auf dem Halteprofil installiert. Dann werden die Lamellen mittels eines einfachen Klicksystems eingehängt.



1 Drehen

2 Klick

3. Klick

Mit dem patentierten "Direct Clip"-System von DUCO für DucoWall Solid und Screening werden die Lamellen direkt auf dem Halteprofil angeklipst. Somit ist die Montage im Handumdrehen erledigt.

3-fache Solid 30Z Lamellen

→ Ausführung

Alle Lamellenwandsysteme sind in allen Farben erhältlich: **F1,**

alle RAL-Farben, Strukturlack, Sonderfarben und -lacke usw. Alle

Lamellenwandsysteme werden standardmäßig in SeaSide-Qualität lackiert. Außerdem erfüllen alle Lamellenwandsysteme in dieser Broschüre die Qualicoat- oder Qualanod-Qualitätsspezifikationen.

→ Vandalismus und Einbruchsicherheit

werden.

Solid Lamellen sind sehr widerstandsfähig und "vandalensicher".

RC2

Jedes Lamellenwandsystem (DucoWall Solid, Classic*, Acoustic und Screening) sowie die Lamellentüren DucoDoor Louvre und Grille können optional einbruchsicher bis Widerstandsklasse 2 nach der europäischen Norm ausgeführt

* Mit Ausnahme von DucoWall Classic W 60C/2, W 60C/3 und DucoWall Acoustic

→ Insektenschutz und Ungezieferschutz

Bei DucoWall Solid Lamellen mit feiner Stanzung (P1) dienen die **perforierten**

Lamellen als Insektenschutz. Bei allen anderen Systemen (Solid P2, Classic, Acoustic und Screening) kann **optional Edelstahlgaze** mit 2,3 x 2,3 mm oder 6 x 6 mm verwendet werden.

Edelstahlgaze

→ Belüftungskapazität

Jede Lamellenwand wird umfassend von der F&E-Abteilung von DUCO getestet und optimiert.

Die 'High Performance' HP Lamellen der DucoWall Classic Produktserie garantieren dank des geringen Widerstands eine optimale

Luftzufuhr.

Lüftungsleis- tungsklasse	Ce or Cd
1	≥ 0,4
2	0,3 - 0,399
3	0,2 - 0,299
4	≤ 0,199

High Performance

DucoWall Classic W 130HP

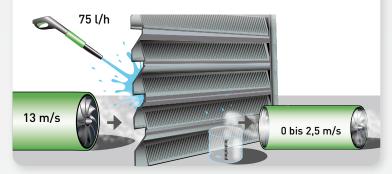
→ Stochersicherheit

DucoWall Classic Lamellenwände mit **V-Lamellen** sind stochersicher.

Alle DucoWall-Lamellenwandsysteme werden von **BSRIA** gemäß den Wasserdichtheitstests geprüft, die in Zusammenarbeit mit HEVAC entwickelt wurden.

Beim Testen werden Niederschlagsmengen von 75 Liter/Stunde

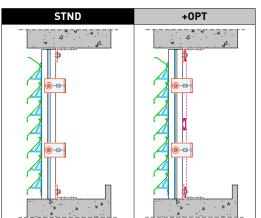
bei einer Windgeschwindigkeit von 13 m/s simuliert. Auf der Grundlage der Luftgeschwindigkeit in der Lamellenwand und des Grads der Wasserabweisung (in Prozent) wird der Lamellenwand eine Klasse zugeordnet:


Klasse A 100 - 99 %

Klasse B 98,5 - 95 %

Klasse C 94,9 - 80 %

Klasse D < 80 %


EN13030

→ Schalldämmung

DucoWall Acoustic Lamellen sind mit nicht brennbarer Mineralwolle gefüllt und eignen sich somit hervorragend für Anwendungen mit großer Lärmbelastung.

→ STND- und +OPT-Version

Die technischen Werte unserer Gitter wurden auf zwei Arten geprüft:

STND = 'Standard'

Dies ist die Standardversion.

+OPT = '+Optionen'

Hierbei handelt es sich um eine optionale Variante, bei der die Lamellenwand inkl. Insektenschutz getestet wurde.

Die **+OPT-Version** bringt oft bessere Ergebnisse in Bezug auf die Wasserdichtigkeit. Alle Werte pro Art von Gitter finden Sie auf der jeweiligen Produktseite.

PRODUKTÜBERSICHT

Belüftungskapazität = bei Zuluft = bei Abluft Je länger der Balken, desto größer die Luftzufuhr. STND und +0PT Version: siehe Seite 5

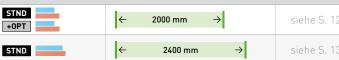
Maximale Überspannung zwischen zwei Halteprofilen

bei 800 Pa und Druckkoeffizient: 1.2

DUCOWALL SOLID

Robuste Aluminumlamellen, die aneinander anschließen, sorgen für Lamellenwände **mit Schutz vor Vandalismus** und einer minimalen Trägerstruktur. **Sehr schnelle Montage** dank des patentierten 'Direct-Clip'-Systems von DUCO.

© DucoWall Solid W 30Z


siehe S. 8

DUCOWALL SCREENING

Aluminium-Lamellenwandsystem, das sich besonders gut für Projekte, bei denen die Lamellenwand an erster Stelle zur **Fassadenverkleidung (Screening)** dient, eignet. Diese Systeme sorgen für eine **sehr schnelle Montage**.

DucoWall Screening 35

DucoWall Screening 70

DUCOWALL CLASSIC

Aluminum-Lamellenwand System mit **Lamellenhaltern**. Schnelle Montage dank des 'Dreh- Klick'-Systems von DUCO. Die Lamellenhalter können separat im Halteprofil angebracht werden, was eine **perfekte Ausführung** ermöglicht.

crinogacia.				
© DucoWall Classic W 20Z		+OPT	← 1200 mm →	siehe S. 14
© DucoWall Classic W 20V		+OPT	← 1850 mm →	siehe S. 15
DucoWall Classic W 35V		+OPT	← 2650 mm →	siehe S. 16
DucoWall Classic W 50Z/30°		+OPT	← 2050 mm →	siehe S. 17
DucoWall Classic W 50Z		+OPT	← 1550 mm →	siehe S. 18
O DucoWall Classic W 50/75Z		+OPT	← 1550 mm →	siehe S. 19
DucoWall Classic W 70V		+OPT	← 2150 mm →	siehe S. 20
O DucoWall Classic W 45HP	HP	STND +OPT	← 1330 mm →	siehe S. 21
© DucoWall Classic W 50HP	HP	+OPT	←1100 mm→	siehe S. 22
DucoWall Classic W 130HP		+OPT n.zutr.	← 2300 mm →	siehe S. 23
DucoWall Classic W 80HP	HP	+OPT	← 1350 mm →	siehe S. 24
DucoWall Classic W 60C	(6)	+OPT	← 1250 mm →	siehe S. 25

 $[\]ensuremath{^*}$ Aufprall- und Durchsturzsicherung gilt nur in Kombination mit Metallklammern.

Maximale Überspannung

zwischen zwei Halteprofilen bei 800 Pa und Druckkoeffizient: 1,2

DUCOWALL ACOUSTIC

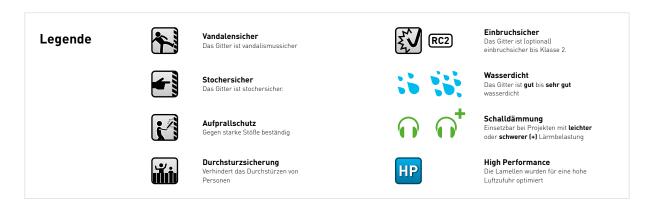
Die Lamellen sind an der Innenseite mit **schalldämmender, nicht entzündlicher Mineralwolle** verkleidet. Schnelle Montage dank des patentierten "Dreh-Klick"-Systems von DUCO.

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
© DucoWall Acoustic W 75Z	STND ← 170	omm → siehe S. 28
OucoWall Acoustic W 75L	STND ← 1650	mm → siehe S. 28
© DucoWall Acoustic W 150	STND +OPT ← :	2 150 mm → siehe S. 29
DucoWall Acoustic W 300	STND +OPT ← :	2 150 mm → siehe S. 29

DUCODOOR LAMELLENTÜREN

Belüftende Lamellentüren oder Scheingittertüren, auf Wunsch in einer Lamellenwand nach Wahl integriert.

Detailed Lameter and General green and Manager III can be Lameter Manager Manager II.							
Duco <mark>Door Wall</mark>		Lamellentür in Lamellenwandsystem ohne besondere Vorgaben	siehe S. 31				
Duco <mark>Door Louvre</mark>	RC2	Lamellentür mit Belüftung oder Scheingittertür in Lamellenwandsystem mit besonderen Vorgaben in Bezug auf Einbruchsicherheit und/oder Zugluftschutz	siehe S. 32				
Duco <mark>Door Grille</mark>	RC2	Freistehende Lamellentür mit Belüftung oder Scheingitter, mit oder ohne besondere Vorgaben in Bezug auf Einbruchsicherheit und/oder Zugluftschutz.	siehe S. 33				

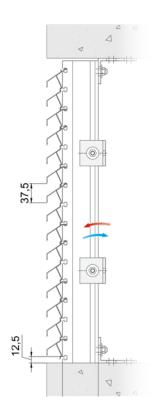

LÜFTUNGSHAUBEN

Bausätze und Elemente für den Aufbau von Lüftungshauben mit DucoWall-Lamellen.

Duco Roof Turret Solid 30Z

siehe S. 36

LAMELLENGITTER


Die Lamellen mit (6) werden auch in Form von Mauer- und/oder Fenstergittern (DucoGrille) angeboten.
Weitere Informationen finden Sie in unserer Broschüre "Lamellengitter".

DucoWall **Solid W 30Z**

DucoWall Solid 30Z Lamellen bieten eine große
Belüftungskapazität mit relativ kleinen Lamellen. Die
"stapelbaren" Lamellen bilden zusammen eine Einheit, sodass
sie **besonders robust** und **vandalensicher** sind. Das robuste
Lamellensystem benötigt nur eine minimale Tragkonstruktion.
Dank des "Direct Clip"-Systems von DUCO ist eine **sehr schnelle Montage** möglich.

MASSE UND HALTEPROFILE

Halteprofiltyp	40/21 (doppelt)	40/70 doppelt	40/100 Doppel
Lamellenschritt		37,5 mm	
Tiefe der Lamelle		30 mm	
Einbautiefe	52 mm	102 mm	132 mm
Maximale Überspannung zwischen 2 Halteprofilen	←	1970 mm	\rightarrow

LÜFTUNGSWERTE

Merkmal		P	1	P2	
мегктац		STND +OPT STND +O		+0PT	
Visueller freier Luftvo	lumenstrom	60 %	n.zutr.	86 %	86 %
Physischer freier Luft	volumenstrom	34 %	n.zutr.	48 % 48 %	
Ce (je höher, je besser)		0,216	n.zutr.	0,234 0,23	
Cd (je höher, je besser)		0,242	n.zutr.	0,271	0,266
K-FAKTOR	ZULUFT	21,43	n.zutr.	18,26	18,58
(je niedriger, je besser)	ABLUFT	17,08	n.zutr.	13,62	14,13

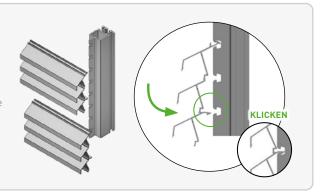
STND- und +OPT-Version: siehe Seite 5

WASSERABWEISUNG

WASSERADWEISONO 1						
		Kla	sse			
Luftgeschwin- digkeit	P	1	P2			
uigkeit	STND	+0PT	STND	+0PT		
0 m/s	В	n.zutr.	В	В		
0,5 m/s	В	n.zutr.	С	В		
1 m/s	С	n.zutr.	С	В		
1,5 m/s	С	n.zutr.	С	В		
2 m/s	D n.zutr. D					
2,5 m/s	D	n.zutr.	D	D		

Stanzungen

DucoWall Solid W 30Z gibt es in einer Ausführung mit Lamellen mit **kleiner Stanzung (P1)**, **großer Stanzung (P2)** oder ohne Stanzung als **Scheingitter (NP)**. Die Kombination innerhalb eines Projekts sorgt für eine einheitliche Fassade.

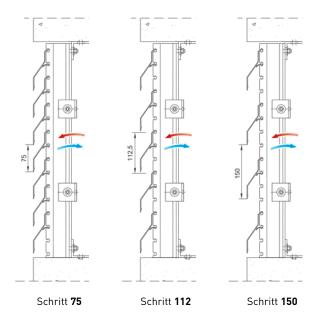

INSEKTENSCHUTZ

Stanzungen	P1	P2	NP
Schutz vor	Perforierte Lamellen als Insektenschutz	Perforierte Lamellen als Vogelschutz OPTIONEN Edelstahlgaze 2,3 x 2,3 mm Edelstahlgaze 6 x 6 mm	100 % Scheingitter

SUPERSCHNELLE MONTAGE

DucoWall Solid W 30Z wird aus **3-fachen Lamellen** konstruiert, die auf dem Halteprofil übereinander mit dem 'Direct Clip'-System von DUCO eingehängt werden. So entsteht ein sehr robustes Konstrukt und die Montage ist im Handumdrehen erledigt.

Die letzte Reihe kann mit einer einfachen Lamelle abgeschlossen werden.



DucoWall **Screening 35**

DucoWall Screening 35 ist ein Lamellenwandsystem, das direkt auf das Halteprofil geklickt wird. Dies ermöglicht eine schnelle, reibungslose Montage. Zur Auswahl stehen drei verschiedene Lamellenschritte. So lässt sich die Lamellenwand bei jedem Projekt nach Wunsch und Bedarf anpassen. Dieses System eignet sich hervorragend für Projekte, bei denen die Lamellenwand in erster Linie als Sichtschutz (Screening) dient.

MASSE UND HALTEPROFILE

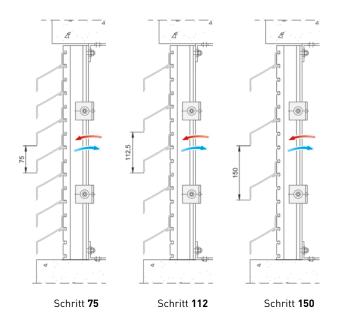
Halteprofiltyp	40/21 (doppelt)	40/70 doppelt	40/100 Doppel		
Lamellenschritt	75 mm - 112 mm - 150 mm				
Tiefe der Lamelle	43 mm				
Einbautiefe	57 mm	107 mm	137 mm		
Maximale Überspannung zwischen 2 Halteprofilen	←	2000 mm	\rightarrow		

LÜETLINGSWERTE

LOFIUNGSWE	LKIL						
Merkmal		75		112		150	
мегктац		STND	+0PT	STND	+0PT	STND	+0PT
Visueller freier Luft	volumenstrom	52 %	52 %	68 %	68 %	76 %	76 %
Physischer freier Luftvolumenstrom		29 %	29 %	27 %	27 %	35 %	35 %
Ce (je höher, je besser)		0,128	0,128	0,122	0,121	0,206	0,204
Cd (je höher, je besser)		0,162	0,161	0,174	0,175	0,224	0,222
K-FAKTOR	ZULUFT	61,04	61,04	67,19	68,30	23,56	24,03
(je niedriger, je besser)	ABLUFT	38,10	38,58	33,03	32,65	19,93	20,29

WASSERABWEISUNG 🛟

Luftge- schwin-	Klasse						
	75		112		150		
digkeit	STND	+0PT	STND	+0PT	STND	+0PT	
0 m/s	Α	Α	В	В	С	С	
0,5 m/s	В	В	С	В	С	С	
1 m/s	В	В	С	С	D	D	
1,5 m/s	D	D	D	D	D	D	
2 m/s	D	D	D	D	D	D	
2,5 m/s	D	D	D	D	D	D	


 [→] Übersicht Halteprofile: siehe Seite 43
 → Ausführliche Spezifikationen: siehe Seite 44

DucoWall **Screening 70**

DucoWall Screening 70 ist ein Lamellenwandsystem mit sehr **hoher Überspannung** und **hohem Luftdurchlass**.

Die Lamellen werden direkt auf dem Halteprofil befestigt (Direct Clip). Da nur wenige Halterungen erforderlich sind, lässt sich die Lamellenwand **sehr schnell montieren**. DucoWall Screening 70 ist in verschiedenen Lamellenschritten erhältlich (75 / 112 / 150 mm).

MASSE UND HALTEPROFILE

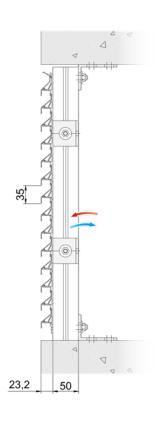
Halteprofiltyp	40/21 (doppelt)	40/70 doppelt	40/100 Doppel		
Lamellenschritt	75 mm - 112 mm - 150 mm				
Tiefe der Lamelle	82 mm				
Einbautiefe	94,5 mm	175 mm			
Maximale Überspannung zwischen 2 Halteprofilen	←	2400 mm	\rightarrow		

LÜFTUNGSWERTE

Merkmal		7	75		112		150	
		STND	+OPT	STND	+0PT	STND	+0PT	
Visueller freier Luftvolumenstrom		53 %	53 %	68 %	68 %	77 %	77 %	
Physischer freier Luftvolumenstrom		37 %	37 %	59 %	59 %	55 %	55 %	
Ce (je höher, je besser)		0,182	0,181	0,212	0,212	0,270	0,264	
Cd (je höher, je besser)		0,200	0,197	0,270	0,266	0,313	0,308	
K-FAKTOR	ZULUFT	30,19	30,52	22,25	22,25	13,72	14,35	
(je niedriger, je besser)	ABLUFT	25,00	25,77	13,72	14,13	10,21	10,54	

WASSERABWEISUNG 🕻

VASSERADWEISONO 50						
Luftge-	Klasse					
schwin-	7	5	11	12	15	50
digkeit	STND	+0PT	STND	+0PT	STND	+0PT
0 m/s	В	Α	В	В	С	С
0,5 m/s	С	В	С	В	D	С
1 m/s	С	С	С	С	D	D
1,5 m/s	С	С	С	С	D	D
2 m/s	D	D	D	С	D	D
2,5 m/s	D	D	D	D	D	D



 [→] Übersicht Halteprofile: siehe Seite 43
 → Ausführliche Spezifikationen: siehe Seite 44

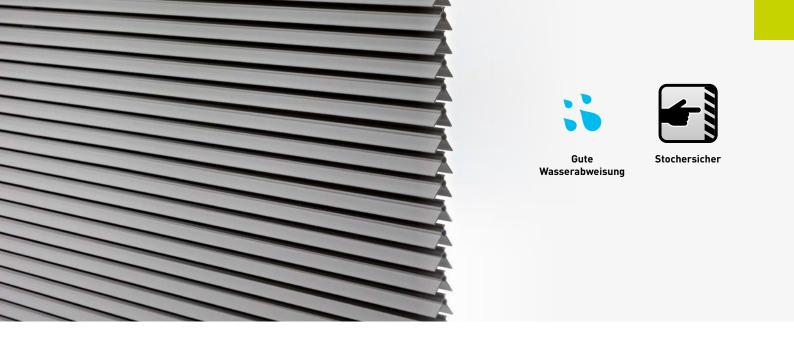
DucoWall Classic W 20Z

DucoWall Classic W 20Z ist ein Lamellenwandsystem, das an einer tragenden Struktur montiert werden kann. Dank des "Dreh-Klick'-Systems ist eine schnelle und einfache Montage möglich. Die "Z"-förmige Lamelle bewirkt eine ästhetische Form.

MASSE UND HALTEPROFILE

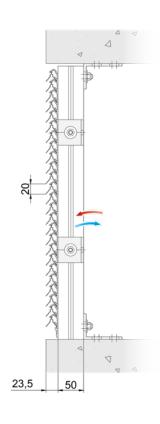
Halteprofiltyp	50/12	21/50 Multi	50/50	50/125	
Lamellenschritt	35 mm				
Tiefe der Lamelle	23 mm				
Einbautiefe	35 mm 73 mm 73 mm 148 mm				
Maximale Überspannung zwischen 2 Halteprofilen	← 1200 mm →				

LÜFTUNGSWERTE


Merkmal		STND	+OPT	
Visueller freier Luftvolumenstrom		63 %	63 %	
Physischer freier Luftvolumenstrom		47 %	47 %	
Ce (je höher, je besser)		0,210	0,203	
Cd (je höher, je besser)		0,181	0,174	
K-FAKTOR	ZULUFT	22,68	24,27	
(je niedriger, je besser)	ABLUFT	30,52	33,03	

WASSERABWEISUNG 😯

WASSERADWEISORO (
Luftgeschwindigkeit	Klasse			
Luitgeschwindigkeit	STND	+OPT		
0 m/s	С	В		
0,5 m/s	С	В		
1 m/s	D	С		
1,5 m/s	D	D		
2 m/s	D	D		
2,5 m/s	D	D		



 [→] Übersicht Halteprofile: siehe Seite 43
 → Ausführliche Spezifikationen: siehe Seite 44

DucoWall Classic W 20V

DucoWall Classic W 20V ist ein Lamellenwandsystem, das an einer tragenden Struktur montiert werden kann. Dank des "Dreh-Klick'-Systems ist eine schnelle und einfache Montage möglich. Die einzigartige "V"-förmige Lamelle bewirkt eine verbesserte Wasserabweisung, macht die Lamellenwand stochersicher und erschwert die Sicht von außen nach innen.

MASSE UND HALTEPROFILE

Halteprofiltyp	50/12	21/50 Multi	50/50	50/125	
Lamellenschritt	20 mm				
Tiefe der Lamelle	23 mm				
Einbautiefe	35 mm 73 mm 73 mm 148 mm				
Maximale Überspannung zwischen 2 Halteprofilen		← 1850	mm →		

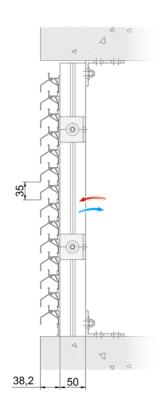
LÜFTUNGSWERTE

Merkmal		STND	+OPT	
Visueller freier Luftvolumenstrom		95 %	95 %	
Physischer freier Luftvolumenstrom		37 %	37 %	
Ce (je höher, je besser)		0,155	0,149	
Cd (je höher, je besser)		0,155	0,149	
K-FAKTOR	ZULUFT	41,62	45,04	
(je niedriger, je besser)	ABLUFT	41,62	45,04	

WASSERABWEISUNG 😽

117.1002117.12100110				
Luftgeschwindigkeit	Klasse			
Luitgeschwindigkeit	STND	+OPT		
0 m/s	Α	Α		
0,5 m/s	В	Α		
1 m/s	С	В		
1,5 m/s	D	В		
2 m/s	D	С		
2,5 m/s	D	D		

 [→] Übersicht Halteprofile: siehe Seite 43
 → Ausführliche Spezifikationen: siehe Seite 44


Gute Wasserabweisung

Stochersicher

DucoWall Classic W 35V ist ein Lamellenwandsystem, das an einer tragenden Struktur montiert werden kann. Dank des "Dreh-Klick'-Systems ist eine schnelle und einfache Montage möglich. Die einzigartige "V"-förmige Lamelle bewirkt eine verbesserte Wasserabweisung, macht die Lamellenwand stochersicher und erschwert die Sicht von außen nach innen.

MASSE UND HALTEPROFILE

Halteprofiltyp	50/12	21/50 Multi	50/50	50/125	
Lamellenschritt	35 mm				
Tiefe der Lamelle	38 mm				
Einbautiefe	50 mm	88 mm	88 mm	163 mm	
Maximale Überspannung zwischen 2 Halteprofilen	←	2650	mm	\rightarrow	

LÜFTUNGSWERTE

Merkmal		STND	+OPT
Visueller freier Luftvolumenstrom		59 %	59 %
Physischer freier Luftvolumenstrom		35 %	35 %
Ce (je höher, je besser)		0,118	0,116
Cd (je höher, je besser)		0,124	0,123
K-FAKTOR	ZULUFT	71,82	74,32
(je niedriger, je besser)	ABLUFT	65,04	66,10

WASSERABWEISUNG 😯

WASSERABWEISONS (
Luftgeschwindigkeit	Kla	sse	
Luitgeschwindigkeit	STND	+OPT	
0 m/s	Α	Α	
0,5 m/s	Α	Α	
1 m/s	Α	Α	
1,5 m/s	Α	Α	
2 m/s	С	В	
2,5 m/s	С	С	

 [→] Übersicht Halteprofile: siehe Seite 43
 → Ausführliche Spezifikationen: siehe Seite 44

DucoWall Classic W 50Z/30°

DucoWall Classic W 50Z/30° ist ein Lamellenwandsystem, das an einer tragenden Struktur montiert werden kann. Dank des 'Dreh-Klick'-Systems ist eine schnelle und einfache Montage möglich. Die "Z"-förmige Lamelle bewirkt eine ästhetische Form. Die Lamellenwand ist verfügbar mit einem Lamellenschritt von 65 oder 75 mm.

MASSE UND HALTEPROFILE

Halteprofiltyp	50/12	21/50 Multi	50/50	50/125
Lamellenschritt	65 oder 75 mm			
Tiefe der Lamelle	53 mm			
Einbautiefe	65 mm	103 mm	103 mm	178 mm
Maximale Überspannung zwischen 2 Halteprofilen	←	2050	mm	\rightarrow

52,8 50 52,8 50

Lamellenschritt 65

Lamellenschritt 75

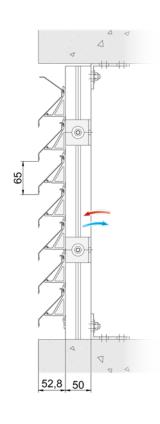
LÜFTUNGSWERTE

Merkmal		6	65		75	
мегктац		STND	+0PT	STND	+0PT	
Visueller freier Luftvolumenstrom		41 %	41 %	49 %	49 %	
Physischer freier Luftvolumenstrom		40 %	40 %	46 %	46 %	
Ce (je höher, je besser)		0,262	0,253	0,312	0,310	
Cd (je höher, je besser)		0,308	0,302	0,339	0,336	
K-FAKTOR	ZULUFT	14,57	15,62	10,27	10,41	
(je niedriger, je besser)	ABLUFT	10,54	10,96	8,70	8,86	

STND- und +OPT-Version: siehe Seite 5 Insektenschutz: optional Edelstahlgaze 2,3 x 2,3 mm oder 6 x 6 mm

WASSFRARWFISHING

WASSERABWEISUNG					
	Klasse				
Luftge- schwindigkeit	6	5	7	5	
Schwindigkeit	STND +OPT		STND	+0PT	
0 m/s	В	Α	В	В	
0,5 m/s	С	В	С	В	
1 m/s	С	В	С	С	
1,5 m/s	C C		С	С	
2 m/s	D C		D	С	
2,5 m/s	D	С	D	D	



 [→] Übersicht Halteprofile: siehe Seite 43
 → Ausführliche Spezifikationen: siehe Seite 44

DucoWall Classic W 50Z

DucoWall Classic W 50Z ist ein Lamellenwandsystem, das an einer tragenden Struktur montiert werden kann. Dank des "Dreh-Klick'-Systems ist eine schnelle und einfache Montage möglich. Die "Z"-förmige Lamelle bewirkt eine ästhetische Form.

MASSE UND HALTEPROFILE

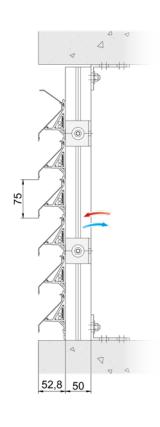
Halteprofiltyp	50/12	21/50 Multi	50/50	50/125
Lamellenschritt	65 mm			
Tiefe der Lamelle	53 mm			
Einbautiefe	65 mm 103 mm 103 mm 178 mm			
Maximale Überspannung zwischen 2 Halteprofilen		← 1550	mm →	

LÜFTUNGSWERTE

Merkmal		STND	+OPT
Visueller freier Luftvolumenstrom		75 %	75 %
Physischer freier Luftvolumenstrom		52 %	52 %
Ce (je höher, je besser)		0,205	0,207
Cd (je höher, je besser)		0,278	0,266
K-FAKTOR	ZULUFT	23,80	23,34
(je niedriger, je besser)	ABLUFT	12,94	14,13

WASSERABWEISUNG 😯

WASSERADWEISONO 1				
Luftgeschwindigkeit	Klasse			
Luitgeschwindigkeit	STND	+OPT		
0 m/s	В	Α		
0,5 m/s	С	В		
1 m/s	С	В		
1,5 m/s	С	С		
2 m/s	D	С		
2,5 m/s	D	D		



 [→] Übersicht Halteprofile: siehe Seite 43
 → Ausführliche Spezifikationen: siehe Seite 44

DucoWall Classic W 50/75Z

DucoWall Classic W 50/75Z ist ein Lamellenwandsystem, das an einer tragenden Struktur montiert werden kann. Dank des "Dreh-Klick'-Systems ist eine schnelle und einfache Montage möglich. Die "Z"-förmige Lamelle bewirkt eine ästhetische Form.

MASSE UND HALTEPROFILE

Halteprofiltyp	50/12	21/50 Multi	50/50	50/125
Lamellenschritt	75 mm			
Tiefe der Lamelle	53 mm			
Einbautiefe	65 mm 103 mm 103 mm 178 mm			
Maximale Überspannung zwischen 2 Halteprofilen		← 1550	mm →	

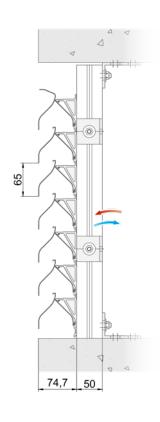
LÜFTUNGSWERTE

Merkmal		STND	+OPT
Visueller freier Luftvolumenstrom		80 %	80 %
Physischer freier Luftvolumenstrom		54 %	54 %
Ce (je höher, je besser)		0,219	0,219
Cd (je höher, je besser)		0,297	0,288
K-FAKTOR	ZULUFT	20,85	20,85
(je niedriger, je besser)	ABLUFT	11,34	12,06

WASSERABWEISUNG

WASSERABWEISONO ()				
Luftgeschwindigkeit	Klasse			
Luitgeschwindigkeit	STND	+OPT		
0 m/s	В	Α		
0,5 m/s	С	В		
1 m/s	С	В		
1,5 m/s	D	С		
2 m/s	D	С		
2,5 m/s	D	D		

 [→] Übersicht Halteprofile: siehe Seite 43
 → Ausführliche Spezifikationen: siehe Seite 44



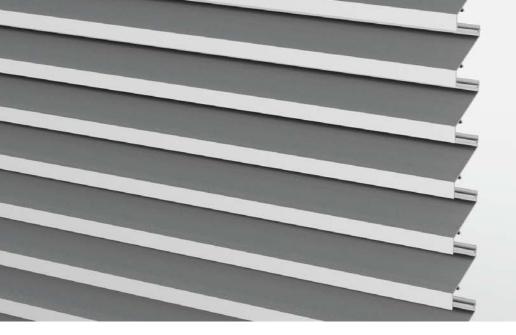
Stochersicher

DucoWall Classic W 70V ist ein Lamellenwandsystem, das an einer bestehenden Struktur montiert werden kann. Dank des "Dreh-Klick'-Systems ist eine schnelle und einfache Montage möglich. Die einzigartige "V"-förmige Lamelle bewirkt eine verbesserte Wasserabweisung, macht die Lamellenwand stochersicher und erschwert die Sicht von außen nach innen.

MASSE UND HALTEPROFILE

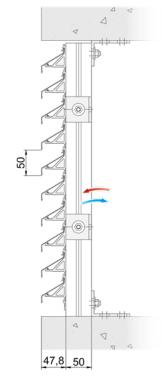
Halteprofiltyp	50/12	21/50 Multi	50/50	50/125
Lamellenschritt	65 mm			
Tiefe der Lamelle	75 mm			
Einbautiefe	87 mm	125 mm	125 mm	200 mm
Maximale Überspannung zwischen 2 Halteprofilen	•	. 2150	mm -	÷

LÜFTUNGSWERTE


Merkmal		STND	+OPT
Visueller freier Luftvolumenstrom		65 %	65 %
Physischer freier Luftvolumenstrom		44 %	44 %
Ce (je höher, je besser)		0,117	0,111
Cd (je höher, je besser)		0,109	0,103
K-FAKTOR	ZULUFT	73,05	81,16
(je niedriger, je besser)	ABLUFT	84,17	94,26

WASSERABWEISUNG 😯

WASSERABWEISONO 10			
Luftgeschwindigkeit	Klasse		
Luitgeschwindigkeit	STND	+0PT	
0 m/s	В	Α	
0,5 m/s	В	В	
1 m/s	В	В	
1,5 m/s	С	С	
2 m/s	D	D	
2,5 m/s	D	D	


 [→] Übersicht Halteprofile: siehe Seite 43
 → Ausführliche Spezifikationen: siehe Seite 44

DucoWall Classic W 45HP

DucoWall Classic W 45HP bietet eine Kombination aus einer sehr guten Luftzufuhr und "Z"-förmigen Lamellen für eine ästhetische Form. Somit eignet sich die DucoWall Classic W 45HP für Projekte mit spezifischen ästhetischen Vorgaben, wo eine intensive Belüftung benötigt wird.

MASSE UND HALTEPROFILE

Halteprofiltyp	50/12	21/50 Multi	50/50	50/125
Lamellenschritt	50 mm			
Tiefe der Lamelle	48 mm			
Einbautiefe	60 mm	98 mm	98 mm	173 mm
Maximale Überspannung zwischen 2 Halteprofilen	← 1330 mm →			
	Kunststoff			
Lamellenhalter	Metallklipse Brandverhalten A2-s1,d0 (EN13501-1)			

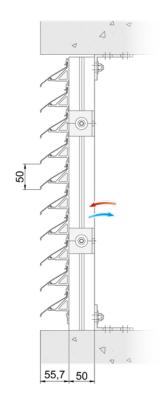
LÜFTUNGSWERTE


Merkmal		STND	+OPT
Visueller freier Luftvolumenstrom		70 %	70 %
Physischer freier Luftvolumenstrom		60 %	60 %
Ce (je höher, je besser)		0,295	0,295
Cd (je höher, je besser)		0,385	0,369
K-FAKTOR	ZULUFT	11,49	11,49
(je niedriger, je besser)	ABLUFT	6,75	7,34

WASSERABWEISUNG 😯

WASSERABWEISONS (
Luftgeschwindigkeit	Klasse		
Luitgeschwindigkeit	STND	+OPT	
0 m/s	С	В	
0,5 m/s	С	В	
1 m/s	С	С	
1,5 m/s	С	С	
2 m/s	D	С	
2,5 m/s	D	С	

 [→] Übersicht Halteprofile: siehe Seite 43
 → Ausführliche Spezifikationen: siehe Seite 44



DucoWall Classic W 50HP

DucoWall Classic W 50HP wurde speziell für Projekte mit intensiver Belüftung entwickelt. Die einzigartig geformte "High Performance"-Lamelle mit niedrigem Widerstandsfaktor garantiert eine hervorragende Luftzufuhr. DucoWall Classic W 50HP ist ein Lamellenwandsystem, das an einer bestehenden Struktur montiert werden kann. Die Montage ist dank des "Dreh-Klick"-Systems schnell und einfach möglich.

Halteprofiltyp	50/12	21/50 Multi	50/50	50/125
Lamellenschritt	50 mm			
Tiefe der Lamelle	56 mm			
Einbautiefe	68 mm	106 mm	106 mm	181 mm
Maximale Überspannung zwischen 2 Halteprofilen	← 1100 mm →			
Kunststoff				
Lamellenhalter	Metallklipse Brandverhalten A2-s1,d0 (EN13501-1)			

LÜFTUNGSWERTE

Merkmal		STND	+0PT
Visueller freier Luftvolumenstrom		88 %	88 %
Physischer freier Luftvolumenstrom		68 %	68 %
Ce (je höher, je besser)		0,358	0,352
Cd (je höher, je besser)		0,439	0,415
K-FAKTOR	ZULUFT	7,80	8,07
(je niedriger, je besser)	ABLUFT	5,19	5,81

WASSERABWEISUNG :

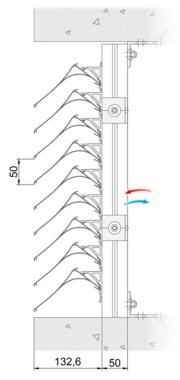
Luftgeschwindigkeit	Klasse		
	STND	+0PT	
0 m/s	С	В	
0,5 m/s	С	В	
1 m/s	С	В	
1,5 m/s	D	С	
2 m/s	D	С	
2,5 m/s	D	С	

 [→] Übersicht Halteprofile: siehe Seite 43
 → Ausführliche Spezifikationen: siehe Seite 44

High Performance

Durchsturzsicherung

Aufprallschutz


DucoWall Classic W 130HP

DucoWall Classic W 130HP wurde speziell für Projekte mit intensiver

Belüftung entwickelt. Die einzigartig geformte "High Performance" Lamelle
mit geringem Widerstandfaktor garantiert eine Kombination aus einer
sehr guten Luftzufuhr und einer ausgezeichneten Wasserabweisung
(Klasse A). DucoWall Classic W 130HP ist ein Lamellenwandsystem,
das an einer bestehenden Struktur montiert werden kann. Dank des
"Dreh-Klick"-Systems ist eine schnelle und einfache Montage möglich.
Die DucoWall Classic W 130HP erfüllt die Klasse 5 der EN13049
für den Aufprallschutz*und die Norm BS6180 (Klasse XI) für die
Durchsturzsicherung*. Siehe Seite 38-39 für alle Klassen pro Land.

MASSE UND HALTEPROFILE

Halteprofiltyp	50/12	21/50 Multi	50/50	50/125
Lamellenschritt	50 mm			
Tiefe der Lamelle	133 mm			
Einbautiefe	145 mm	183 mm	183 mm	258 mm
Maximale Überspannung zwischen 2 Halteprofilen	← 2300 mm →			
Kunststoff				
Lamellenhalter	Metallklipse Brandverhalten A2-s1,d0 (EN13501-1)			

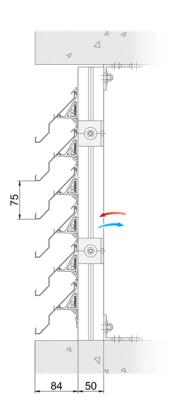
LÜFTUNGSWERTE

Merkmal		STND	+0PT
Visueller freier Luftvolumenstrom		88 %	n.zutr.
Physischer freier Luftvolumenstrom		70 %	n.zutr.
Ce (je höher, je besser)		0,327	n.zutr.
Cd (je höher, je besser)		0,295	n.zutr.
K-FAKTOR ZULUFT		9,35	n.zutr.
(je niedriger, je besser)	ABLUFT	11,49	n.zutr.

WASSERABWEISUNG 🐪

Ludan a about all about	Klasse	
Luftgeschwindigkeit	STND	+0PT
0 m/s	Α	n.zutr.
0,5 m/s	Α	n.zutr.
1 m/s	Α	n.zutr.
1,5 m/s	Α	n.zutr.
2 m/s	Α	n.zutr.
2,5 m/s	С	n.zutr.

STND- und +0PT-Version: siehe Seite 5 Insektenschutz: optional Edelstahlgaze $2,3 \times 2,3$ mm oder 6×6 mm * Aufprall- und Durchsturzsicherung gilt nur in Kombination mit Metallklammern.



 [→] Übersicht Halteprofile: siehe Seite 43
 → Ausführliche Spezifikationen: siehe Seite 44

DucoWall Classic W 80HP

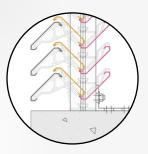
DucoWall Classic W 80HP ist ein Lamellenwandsystem, das an einer bestehenden Struktur montiert werden kann. Dank des 'Dreh-Klick'-Systems ist eine schnelle und einfache Montage möglich. Die einzigartig geformte 'High Performance'-Lamelle sorgt für eine **gute Wasserabweisung** und einen **hohen Luftdurchlass**.

MASSE UND HALTEPROFILE

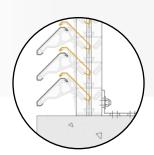
Halteprofiltyp	50/12	21/50 Multi	50/50	50/125
Lamellenschritt	75 mm			
Tiefe der Lamelle	84 mm			
Einbautiefe	96 mm 134 mm 134 mm 209 mm			
Maximale Überspannung zwischen 2 Halteprofilen	← 1350 mm →			

LÜFTUNGSWERTE

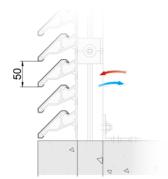
Merkmal		STND	+OPT
Visueller freier Luftvolumenstrom		83 %	83 %
Physischer freier Luftvolumenstrom		49 %	49 %
Ce (je höher, je besser)		0,299	0,284
Cd (je höher, je besser)		0,271	0,256
K-FAKTOR	ZULUFT	11,19	12,40
(je niedriger, je besser)	ABLUFT	13,62	15,26


WASSERABWEISUNG 😽

WASSERABWEISONS			
Luftgeschwindigkeit	Klasse		
Luitgeschwindigkeit	STND	+OPT	
0 m/s	Α	Α	
0,5 m/s	В	В	
1 m/s	В	С	
1,5 m/s	С	С	
2 m/s	С	С	
2,5 m/s	D	D	



 [→] Übersicht Halteprofile: siehe Seite 43
 → Ausführliche Spezifikationen: siehe Seite 44



W 60C/3
Dreifache Lamellenreihe

W 60C/2
Doppelte Lamellenreihe

W 60C Einfache Lamellenreihe

DucoWall Classic W 60C

DucoWall Classic W 60C ist ein 'Design'-Lamellenwandsystem aus 'kalt gewalzten' anstelle von extrudierten Aluminiumlamellen. Die Kunststoff-Lamellenhalter garantieren eine einzigartige Stabilität. Die drei Ausführungen (ein-, zweioder dreifach) bieten eine Kombination aus einem maximalen Luftdurchlass und einer sehr großen Wasserabweisung, selbst unter extremen Witterungsbedingungen.

MASSE UND HALTEPROFILE

Halteprofiltyp		50/12	21/50 Multi	50/50	50/125
Lamellenschritt		50 mm			
Tiefe der Lamell	.e	77 mm			
	60C	89 mm	127 mm		
Einbautiefe	60C/2	×		127 mm	202 mm
	60C/3				
Maximale Übers zwischen 2 Halte		← 1250 mm →			

LÜFTUNGSWERTE

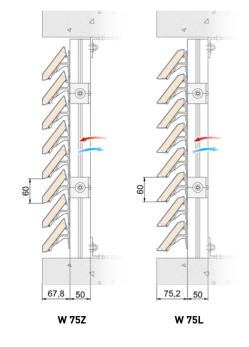
Merkmal		6	0C	60C/2		60C/3	
		STND	+0PT	STND	+0PT	STND	+0PT
Visueller freier Luftvolumenstrom		84 %	84 %	84 %	84 %	84 %	84 %
Physischer freier Luftvolumenstrom		46 %	46 %	36 %	36 %	36 %	36 %
Ce (je höher, je besser)		0,315	0,300	0,208	0,202	0,179	0,175
Cd (je höher, je besser)		0,305	0,291	0,196	0,191	0,153	0,151
K-FAKTOR (je niedriger, je besser)	ZULUFT	10,08	11,11	23,11	24,51	31,21	32,65
	ABLUFT	10,75	11,81	26,03	27,41	42,72	43,86

WASSERABWEISUNG

Luftge-	Klasse							
schwin-	60	60C		60C 60C/2		C/2	600	C/3
digkeit	STND	+0PT	STND	+0PT	STND	+0PT		
0 m/s	В	В	Α	Α	Α	Α		
0,5 m/s	С	С	Α	Α	Α	Α		
1 m/s	С	С	В	В	Α	Α		
1,5 m/s	D	D	С	С	Α	Α		
2 m/s	D	D	С	С	Α	Α		
2,5 m/s	D	D	С	С	С	С		

 [→] Übersicht Halteprofile: siehe Seite 43
 → Ausführliche Spezifikationen: siehe Seite 44

DucoWall


Acoustic

W 75Z & 75L

DucoWall Acoustic W 75Z und W 75L sind **schalldämmende** Lamellenwandsysteme aus Aluminium-Strangpressprofilen, die mit schalldämmender, nicht brennbarer Mineralwolle gefüllt sind. Die Lamelle kann **sowohl in Z- als auch in L-Form** auf den Kunststoff-Lamellenhaltern angebracht werden für unterschiedliche ästhetische Anwendungen.

MASSE UND HALTEPROFILE

Halteprofiltyp		50/12	21/50 Multi	50/50	50/125
Lamellenschritt		60 mm			
Tiefe der Lamell	е	67 mm			
Einbautiefe	75Z	79 mm	117 mm	117 mm	192 mm
	75L	87 mm	125 mm	125 mm	200 mm
Maximale Überspannung	75Z	←	1700	mm	\rightarrow
zwischen 2 Halteprofilen	75L	←	1650	mm	\rightarrow

SCHALLDÄMMUNG

Dämmungswert Rw (C;Ctr)			
W 75Z	W 75L		
6 (0;-1) dB	6 (0;-2) dB		

LÜFTUNGSWERTE

Merkmal		75Z		75L	
		STND	+0PT	STND	+0PT
Visueller freier Luftvolumenstrom		76 %	76 %	95 %	95 %
Physischer freier Luftvolumenstrom		28 %	28 %	28 %	28 %
Ce (je höher, je besser)		0,196	0,196	0,212	0,209
Cd (je höher, je besser)		0,183	0,182	0,258	0,254
K-FAKTOR	ZULUFT	26,03	26,03	22,25	22,89
(je niedriger, je besser)	ABLUFT	29,86	30,19	15,02	15,50

WASSERABWEISUNG 🛟

WASSERADWEISONO \$					
	Klasse				
Luftge- schwindigkeit	75	5Z	75L		
Sentimorgacia	STND	+0PT	STND	+OPT	
0 m/s	В	В	В	В	
0,5 m/s	В	В	В	В	
1 m/s	С	С	С	С	
1,5 m/s	С	С	D	D	
2 m/s	D	D	D	D	
2,5 m/s	D	D	D	D	

 [→] Übersicht Halteprofile: siehe Seite 43
 → Ausführliche Spezifikationen: siehe Seite 44

DucoWall Acoustic W 150 & 300

DucoWall Acoustic W 150 ist ein schalldämmendes Lamellenwandsystem aus Aluminium-Strangpressprofilen mit schalldämmender, nicht brennbarer Mineralwolle für **zusätzliche Schalldämmung**. Bei der DucoWall Acoustic W 300 werden zwei 150-Lamellen für eine optimale Schalldämmung hintereinander positioniert.

MASSE UND HALTEPROFILE

Halteprofiltyp		50/12	21/50 Multi	50/50	50/125
Lamellenschritt		150 mm			
Tiefe der Lamelle		142 mm			
Einbautiefe	150	154	192	192	267 mm
Ellibautiele	300	mm	mm	mm	x
Maximale Überspa zwischen 2 Haltepi			\rightarrow		

W 150 (einzelne Reihe) W 300 (doppelte Reihe)

SCHALLDÄMMUNG

Dämmungswert Rw (C;Ctr)				
W 150	W 300			
11 (-1;-2) dB	17 (-1;-3) dB			

LÜFTUNGSWERTE

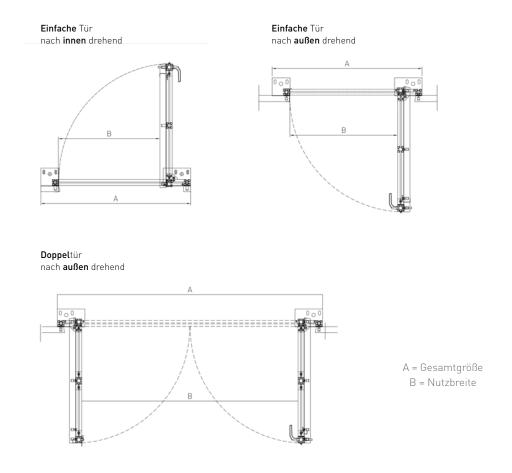
Merkmal		150		300	
		STND	+0PT	STND	+0PT
Visueller freier Luftvolumenstrom		74 %	74 %	74 %	74 %
Physischer freier Luftvolumenstrom		35 %	35 %	35 %	35 %
Ce (je höher, je besser)		0,301	0,295	0,272	0,250
Cd (je höher, je besser)		0,302	0,296	0,272	0,250
K-FAKTOR	ZULUFT	11,04	11,49	13,52	16,00
(je niedriger, je besser)	ABLUFT	10,96	11,41	13,52	16,00

 $\textbf{STND- und + OPT-Version: siehe Seite 5} \hspace{0.2cm} \textbf{Insektenschutz: optional Edelstahlgaze 2,3 x 2,3 mm oder 6 x 6 mm}$

WASSERABWEISUNG 💦

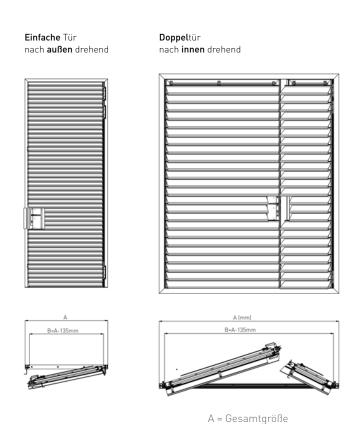
Klasse					
15	50	30	300		
STND	+0PT	STND	+0PT		
В	В	Α	Α		
С	С	В	В		
С	С	В	В		
С	С	С	С		
D	D	С	С		
D	D	D	D		
	STND B C C C	150 STND +OPT B B B C C C C C C D D	150 30 STND +OPT STND B B A C C B C C B C C C D D C		

 [→] Übersicht Halteprofile: siehe Seite 43
 → Ausführliche Spezifikationen: siehe Seite 44


DUCO LAMELLENTÜREN

In unserer Lamellentür-Palette bieten wir die Auswahl aus **DucoDoor Wall**, **DucoDoor Louvre** und **DucoDoor Grille**, abhängig von den ästhetischen, technischen und gesetzlichen Vorgaben des jeweiligen Gebäudes. Die Lamellentüren von DUCO eignen sich für die Anwendung in (technischen) Räumen, für Tiefgaragen, usw. sowohl mit **Belüftung** als auch als (zugluftdichte) **Scheingittertür**. Alle Türen garantieren ein **elegantes und einheitliches Fassadenbild**.

Тур						
	DucoDoor Wall siehe S. 31	DucoDoor Louvre siehe S. 32	DucoDoor Grille siehe S. 33			
Anwendung	Lamellentüren in Lamellenwandsystemen ohne besondere Vorgaben.	Lamellentür mit Belüftung oder Scheingittertür in Lamellenwandsystem mit bestimmten Vorgaben in Bezug auf Einbruchsicherheit und/oder als Zugluftschutz.	Freistehende Lamellentüren mit Belüftung oder Scheingitter, mit eventuell besonderen Vorgaben in Bezug auf Einbruchsicherheit und/ oder Zugluftschutz.			
Vandalensicher	✓ Mit Solid 30Z-Lamellen	✓ Mit Solid 30Z-Lamellen	✓			
Einbruchsicher RC2	×	RC2 möglich mit NP oder P1 Lamellen im Inneren	RC2 möglich mit NP oder P1 Lamellen im Inneren			
Zugluftschutz	×	√ Möglich bei NP Lamellen	√ Möglich bei NP Lamellen			
Lamellen	Vollständige DucoWall Produktserie möglich	Vollständige DucoWall Produktserie möglich als Aufbaulamelle, optional in Kombination mit Solid 30Z Lamellen im Inneren	Solid 30Z NP, P1 oder P2 Lamellen			
Öffnungswinkel	90°	180°	180°			
Mögliche Ausführungen	Einfache/Doppeltür nach innen/außen drehend nach links/rechts zu öffnen					
Maximale Nutzmaße	Einfache Tür: B 1500 x H 3000 mm Doppeltür: B 3000 x H 3000 mm					
Türbeschlag	Standardmäßig mit einem Türgriff auf der Innenseite der Tür und einem T-Handgriff auf der Außenseite ausgestattet. Andere Kombinationen sind auf Anfrage erhältlich. Panikschluß möglich bei Türen, die als Notausgang dienen (nur für Türen, die niedriger sind als 2,2 m und nur bei nach außen drehenden und nichteinbruchsicheren Türen).					


DucoDoor Wall ist eine **Drehtür**, die ganz einfach mit den gleichen Lamellen und Profilen wie die von Ihnen gewählte Lamellenwand gebaut werden kann. Dank einer breiten Auswahl an Solid, Classic und Screening Lamellen lässt sich die DucoDoor Wall nahtlos und **unsichtbar in eine ganze Lamellenwand** integrieren. So bleibt das **Fassadenbild elegant und einheitlich**.

DucoDoor Louvre ist eine **einbruchsichere Lamellentür** von DUCO, die ausführlich von SKG getestet wurde, gemäß den europäischen

Normen (EN 1627:2011 & NEN 5096+C2:2011) und die eine **Widerstandsklasse RC2** hat. Die DucoDoor Louvre kann zudem **zugluftfrei** gemacht werden. Dank der an der Seite angepassten Scharniere erhält die Tür eine **große Nutzbreite** und kann die bis zu **180° geöffnet** werden. Diese Art von Lamellentür kann ganz leicht in eine Lamellenwand eingearbeitet werden, da die **gesamte Palette** von Solid, Classic und Screening Lamellen eingesetzt werden kann.

B = Nutzbreite

DucoDoor Grille ist eine **freistehende Zugangstür** für Wände, die nicht aus Lamellen bestehen. Dank der **standardmäßig integrierten**

Solid-Lamellen (Typ 30Z), die auf drei unterschiedliche Arten gestanzt werden können (P1, P2 oder NP), entsteht ein ästhetisches und ausdruckstarkes Fassadenbild. Auch in Sachen Einbruchsicherheit erzielt die DucoDoor Grille tolle Ergebnisse. Solid Lamellen machen jede Version vandalismussicher. Außerdem wurde diese Lamellentür bei SKG nach den europäischen Normen (EN 1627:2011 & NEN 5096+C2:2011) getestet und wird die auch in einer RC2-zertifizierten Ausführung angeboten. Zudem kann DucoDoor Grille vollkommen zugluftsicher gemacht werden. Dank der an der Seite angewandten Scharniere erhält die Tür eine große Nutzbreite und kann die bis zu 180° geöffnet werden.

Doppeltür nach außen drehend

A = Gesamtgröße B = Nutzbreite

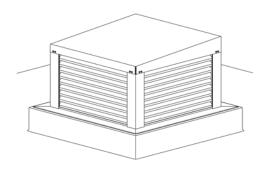
EINBRUCHSICHER

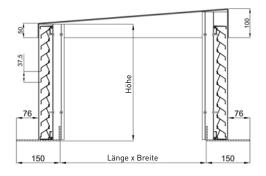
DucoDoor Grille

ist optional auch in Einbruchsicherheitsklasse RC2 verfügbar. Zertifikat auf Anfrage erhältlich.

PRODUKTMERKMALE

Bei DucoDoor Grille werden Solid 30Z Lamellen verwendet. Die Einzelheiten zu den Produktmerkmalen in Bezug auf Belüftungskapazität, Wasserabweisung und Insektenschutz finden Sie auf Seite 8.





Duco Roof Turret Solid 30Z

Duco Roof Turret Solid 30Z ist eine Lüftungshaube aus Aluminium. Lüftungsöffnungen werden somit auf ansprechende Weise verborgen. Gleichzeitig sorgt die Lüftungshaube für eine ausreichend intensive Lüftung der abgeschirmten Räume und kann sie in fast allen Projekten eingesetzt werden. Die perforierten Solid 30Z-Lamellen sind sowohl in Sachen Insektenschutz als auch hinsichtlich der Lüftungskapazität die perfekte Lösung. Dank der groben Stanzung (P2) lassen sich auch mit dieser kleinen Lüftungshaube große Lüftungswerte erreichen. Die Lüftungshauben werden komplett maßangefertigt und haben unten ein Anschlussblech und

Lamellenschritt	37,5 mm		
Länge der Lüftungshaube	Mind. 200 mm - max. 2630 mm (zu koppeln)		
Breite der Lüftungshaube	Mind. 200 mm - max. 1180 mm (zu koppeln)		
Höhe der Lüftungshaube	min. 255 mm - max. 1600 mm		

LÜFTUNGSWERTE

Merkmal		P1	P2	P2 + ECG*
		STND	STND	STND
Visueller freier Luftvolumenstrom		60 %	86 %	86 %
Physischer freier Luftvolumenstrom		34 %	48 %	48 %
Ce (je höher, je besser)		0,243	0,258	0,179
Cd (je höher, je besser)		0,234	0,253	0,202
K-FAKTOR (je niedriger, je besser)	ZULUFT	16,94	15,02	31,21
	ABLUFT	18,26	15,62	24,51

STND- und +OPT-Version: siehe Seite 5

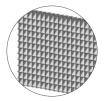
*ECG = Eierkistengitter (siehe Seite 37)

WASSERABWEISUNG 😽

Luftge- schwindig- keit	Klasse				
	P1	P2	P2 + ECG*		
	STND	STND	STND		
0 m/s	В	С	Α		
0,5 m/s	С	С	Α		
1 m/s	С	С	Α		
1,5 m/s	D	D	В		
2 m/s	D	D	С		
2,5 m/s	D	D	С		

Schwellenprofil

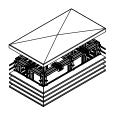
Duco Roof Turret Solid 30Z gibt es auch als Variante mit Schwellenprofil. Das Schwellenprofil sorgt für eine bessere Wasserableitung. Durch das Schwellenprofil kann die Dacheindeckung vollständig verdeckt werden. Dies sorgt für einen ästhetischen Finish. Dies bietet auch mehr Platzierungsmöglichkeiten.



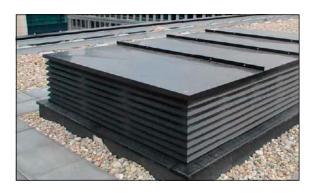
OPTIONEN DUCO ROOF TURRET SOLID 30Z

DucoGrille Close 105

DucoGrille Close 105 kann wahlweise in die Lüftungshaube integriert werden, demzufolge eine kontrollierte Luftzuleitung oder -ableitung sichergestellt ist. Mehr Infos über DucoGrille Close 105 finden sich in unserer Broschüre "Lamellengitter".



Eierkistengitter


Duco Roof Turret Solid 30Z ist wahlweise mit einem Eierkistengitter erhältlich, das (in Kombination mit den P2-Lamellen) für eine noch bessere Wasserdichtigkeit sorgt.

LÜFTUNGSHAUBEN MIT ANDEREN LAMELLEN

Neben Duco Roof Turret Solid 30Z bietet DUCO auch ein System an, bei dem nahezu **alle Lamellenarten** des DucoWall-Sortiments verwendet werden können. Diese Lüftungshauben sind aus Profilen des DucoWall-Sortiments aufgebaut. Einschließlich Abdeckplatte und Anschlussblechen. Sie sind als Einzelteile, halb zusammengesetzte Bausätze oder komplett montierte Kits erhältlich. Weitere Infos? Wenden Sie sich an Ihren DUCO-Händler.

AUFPRALL- UND DURCHSTURZSICHERUNG

Von Fassadenelementen wird zunehmend erwartet, dass sie Anforderungen hinsichtlich "Aufprallschutz" und "Durchsturzsicherung" erfüllen:

Aufprallschutz

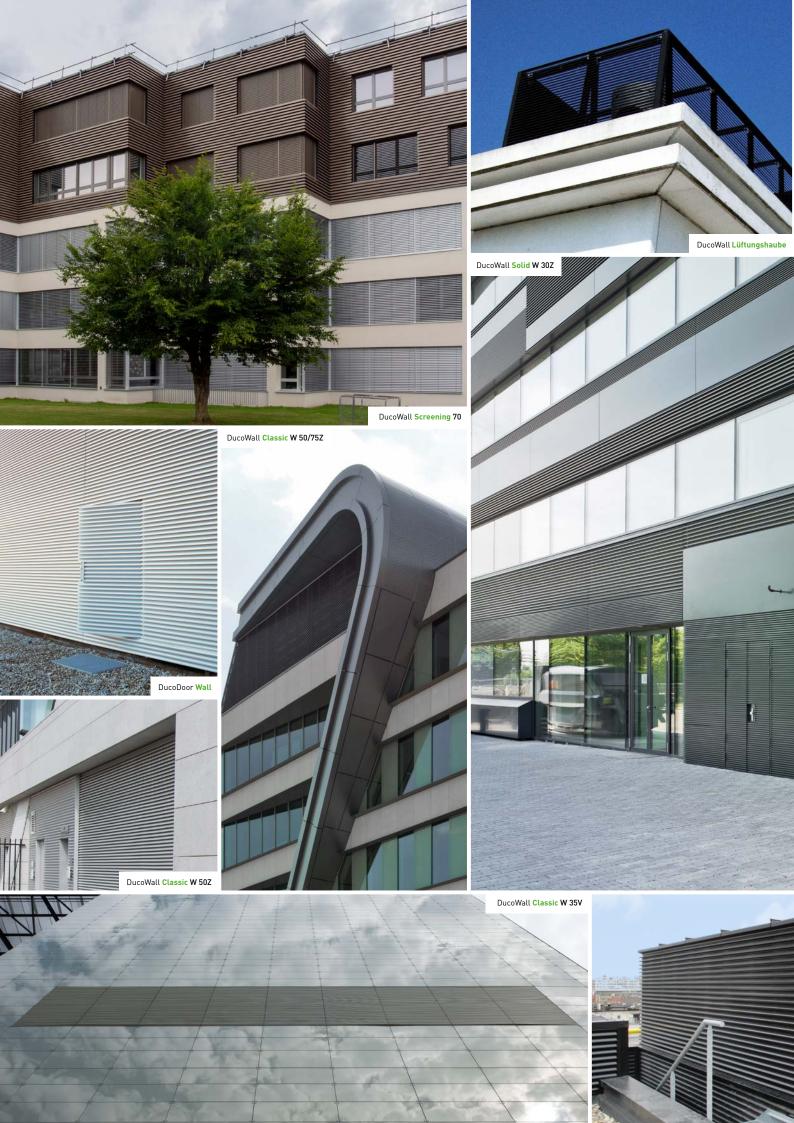
Die Widerstandsfähigkeit eines Materials, auf das für kurze Zeit eine starke Kraft oder ein Stoß ausgeübt wird.

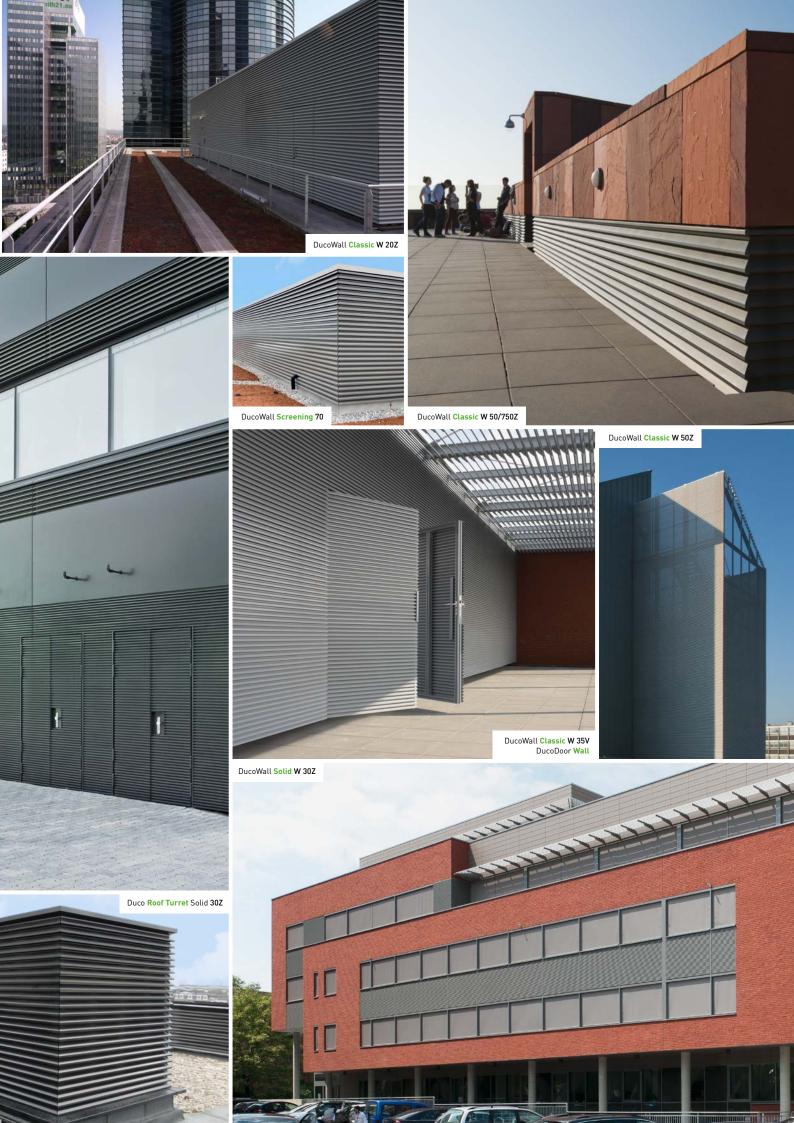
Durchsturzsicherung

Die Kraft, die aufgebracht wird, um dem Durchdringen zu widerstehen, die verhindert, dass Personen durch diese Barriere fallen.

Achtung: oft gilt eine bestimmte Montagemethode oder der Test ist nur für bestimmte Versionen gültig (z.B. eine bestimmte Stufe, eine bestimmte maximale Spannweite ...).

Wenden Sie sich für weitere Informationen an DUCO. Die vollständigen Prüfberichte können bei DUCO angefordert werden.


Überblick über die neuen Ergebnisse


DUCO-Produkte erzielen sehr gute Ergebnisse in Bezug auf Aufprall- und Durchsturzsicherung:

	Aufpral	lschutz	Durchsturzsicherung					
	EN 13049	NF P08-302	B03-00¢	NEN EN1991-1-1	NF P01-013	BS6180		
Maximale Klasse	Klasse 5	H2	Klasse C5	Klasse C5	C1-C5/D	XI		

DUCOWALL CLASSIC

DucoWall Classic W 130HP Metal Clip	Klasse 5	-	C5a	A/B/F/G	=	XI

SERVICE BITTE!

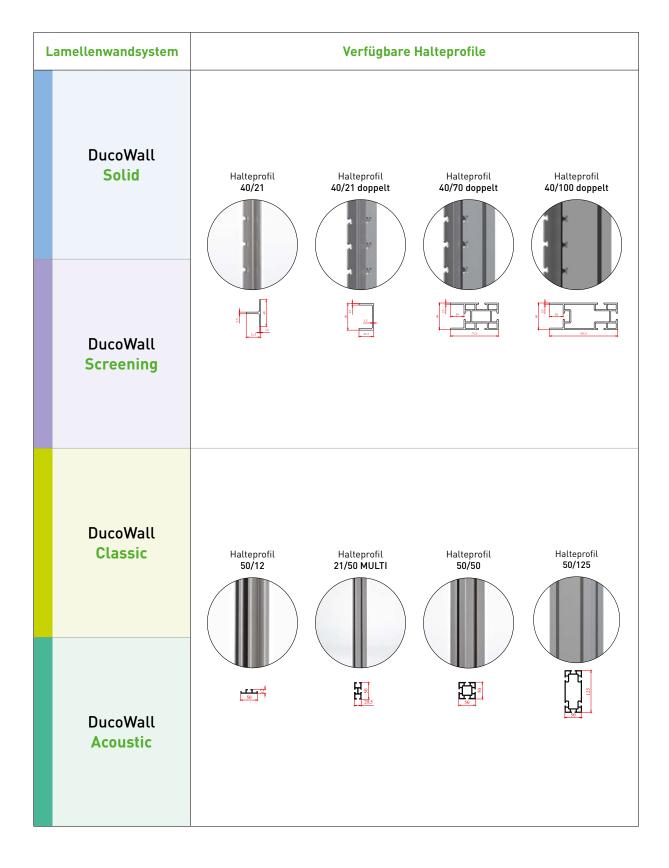
Für optimale Hilfe für Ihr Projekt finden
Sie auf unserer Website professionelle
Querschnittzeichnungen, technische
Datenblätter, Baubeschreibungstexte und
Montageanleitungen: www.duco.eu
Entdecken Sie, was DUCO Ihnen noch zu bieten hat.

Luftdurchlass berechnen →luftdurchlassberechnung.duco.eu Berechnen Sie mit diesem praktischen Online-Tool den benötigten Luftvolumenstrom, die Oberfläche oder die Druckverluste für die unterschiedlichen Gittermodelle.

BIM-Bibliothek → www.duco.eu/bim

Alle Produkte in dieser Bibliothek sind in Autodesk Revit frei verfügbar.

Baubeschreibungstexte → Zu allen Produkten finden Sie Baubeschreibungstexte auf unserer Website www.duco.eu.



BERATUNG NACH MASS

DUCO bietet Fachwissen und Service nach Maß für Planer und hat eine spezifische Abteilung, um Architekten, Studien- und Beratungsfirmen zu beraten und unterstützen. DUCO arbeitet mit renommierten Einrichtungen zusammen, wie der WTCB, dem von Karman Institut, usw.... Dank der Fachkenntnisse und den jahrelangen Erfahrungen kann Ihnen DUCO für jedes Ihrer Projekte eine passende Lösung anbieten.

Fragen? Kontaktieren Sie uns per E-Mail an info@duco.eu oder wählen Sie die +32 58 33 00 66, wenn Sie eine gezielte individuelle Beratung wünschen!

ÜBERSICHT HALTEPROFILE

TABELLE MIT TECHNISCHEN DATEN

DAIEN	N .																
DATE	`					WALL LID											
								Cla	ssic	Cla	ssic	Cla	ssic		Cla	ssic	
						olid OZ		2	0Z	2	0V	3	5V		50Z	/ 30°	
→ Lüftur	ngswer	te				e S. 8		siene	e S. 14	siene	e S. 15	siene	e S. 16		siene	: 5. 1/	
	Merkmal		Einheit	P1	F	P2	NP							Schr	itt 65	Schr	itt 75
				STND	STND	+OPT	STND	STND	+OPT	STND	+0PT	STND	+OPT	STND	+0PT	STND	+0PT
Visueller freier L			%	60	86	86	0	63	63	95	95	59	59	41	41	49	49
Physischer freier K-Faktor Zuluft			%	34 21,43	48 18,26	48 18,58	0 n.zutr.	47 22,68	47 24,27	37 41,62	37 45,04	35 71,82	35 74,32	40 14,57	40 15,62	46 10,27	46 10,41
K-Faktor Abluft				17,08	13,62	14,13	n.zutr.	30,52	33,03	41,62	45,04	65,04	66,10	10,54	10,96	8,70	8,86
Ce (je höher, je bess				0,216	0,234	0,232	n.zutr.	0,210	0,203	0,155	0,149	0,118	0,116	0,262	0,253	0,312	0,310
Cd (je höher, je bess	ser)			0,242	0,271	0,266	n.zutr.	0,181	0,174	0,155	0,149	0,124	0,123	0,308	0,302	0,339	0,336
→ Wasse	erabwe Merkmal	isung	Einheit	P1		22	NP	C.T.V.D.		CTUS		CTUB			itt 65		itt 75
				STND	STND	+OPT	STND	STND	+OPT	STND	+0PT	STND	+0PT	STND	+0PT	STND	+0PT
Wasserdichtigkei			Klasse	В	В	В	n.zutr.	С	В	A	A	A	A	В	A	В	В
Wasserdichtigkei Wasserdichtigkei			Klasse	B C	C	B B	n.zutr.	C	B	В	A B	A	A	C	B B	С	B
Wasserdichtigkei			Klasse	C	С	В	n.zutr. n.zutr.	D	D	D	В	A	A	С	С	С	С
Wasserdichtigkei			Klasse	D	D	С	n.zutr.	D	D	D	С	C	В	D	С	D	С
Wasserdichtigkei			Klasse	D	D	D	n.zutr.	D	D	D	D	С	С	D	С	D	D
→ Akust		/erte		P1	F	P2	NP							Schr	itt 65	Schr	itt 75
Rw			dB	n.zutr.	n.z	zutr.	n.zutr.	n.z	zutr.	n.z	zutr.	n.z	zutr.	n.z	utr.	n.z	utr.
С				n.zutr.	n.z	zutr.	n.zutr.	n.z	zutr.	n.z	zutr.	n.z	zutr.	n.z	utr.	n.z	utr.
C _{tr}				n.zutr.		zutr.	n.zutr.		zutr.		utr.		zutr.		utr.		utr.
Oktavbandwerte		bei 125 Hz	dB	n.zutr.		zutr.	n.zutr.		zutr.		zutr.		zutr.		utr.		utr.
		bei 250 Hz bei 500 Hz	dB dB	n.zutr.		zutr. zutr.	n.zutr. n.zutr.		zutr. zutr.		zutr. zutr.		zutr. zutr.		utr. utr.		utr. utr.
		bei 1000 Hz	dB	n.zutr.		zutr.	n.zutr.		zutr.		utr.		zutr.		utr.		utr.
		bei 2000 Hz	dB	n.zutr.		zutr.	n.zutr.		zutr.		zutr.		zutr.		utr.		utr.
		bei 4000 Hz	dB	n.zutr.	n.z	zutr.	n.zutr.	n.z	zutr.	n.z	zutr.	n.z	zutr.	n.z	utr.	n.z	utr.
→ Halte _l		und Maße	Find all	D1			ND.							Color	: / E	C.I.	in pr
Lamati :	Merkmal		Einheit	P1		P2	NP) F		20).F		itt 65		itt 75
Lamellenschritt	•		mm			7,5 20			35		20		35		5		75
Tiefe der Lamelle	e	40/21 (doppelt)	mm			30 51		-	23 ×	_	23 x		38 X	+	i3 ic	ł	i3 K
	Solid		mm			02			×		×		×		K		K
	Screening	40/70 doppelt 40/100 Doppel	mm			32		-	×	-	×		×		K K		K K
Gesamtein- bautiefe im		50/12	mm			32 X			35	_	35		50	_	5	_	5
Halteprofil	01-	21/50 MULTI				×			73		73		38		03		03
	Classic Acoustic	50/50	mm			×		1	73 73		73 73		38		03	-	03
		50/125	mm			×			/3 48		48		63		78		78
Maximale Überen	nannung zwice	hen 2 Halteprofilen	mm			770		-	200	_	48 350	-	65 650	-	150		150
aximuse onel 3h		= marrepronten		1	1.4			1 12		1 10		1 20		1 20		1 20	

STND- und +OPT-Version: siehe Seite 5

DUCOWALL CLASSIC

Clas 50 siehe	Z		ssic '75Z · S. 19	70	ssic DV S. 20	Clas 45 siehe	ssic HP	Clas 50 siehe	ssic HP	Classic 130HP siehe S. 23	80	ssic			Clas 60 siehe	С		
													60	ос	600	/2	600	C/3
STND	+0PT	STND	+OPT	STND	+OPT	STND	+0PT	STND	+OPT	STND	STND	+0PT	STND	+0PT	STND	+0PT	STND	+OPT
75	75	80	80	65	65	70	70	88	88	88	83	83	84	84	84	84	84	84
52	52	54	54	44	44	60	60	68	68	70	49	49	46	46	36	36	36	36
23,80	23,34	20,85	20,85	73,05	81,16	11,49	11,49	7,80	8,07	9,35	11,19	12,40	10,08	11,11	23,11	24,51	31,21	32,65
12,94 0,205	0,207	11,34 0,219	12,06 0,219	84,17 0,117	94,26 0,111	6,75 0,295	7,34 0,295	5,19 0,358	5,81 0,352	11,49 0,327	13,62 0,299	15,26 0,284	10,75 0,315	11,81 0,3	26,03 0,208	0,202	42,72 0,179	43,86 0,175
0,278	0,266	0,297	0,288	0,109	0,103	0,385	0,369	0,439	0,415	0,295	0,271	0,256	0,305	0,291	0,196	0,191	0,153	0,151
														20	/00	, (n	(20)	0/0
													61	oc .	600	/2	600	C/3
STND	+0PT	STND	+OPT	STND	+OPT	STND	+0PT	STND	+OPT	STND	STND	+0PT	STND	+OPT	STND	+0PT	STND	+OPT
В	Α	В	Α	В	Α	С	В	С	В	A	Α	A	В	В	A	A	A	A
C	B B	C C	B B	B B	B B	C	B C	C	B B	Α Α	B B	B	С	C	A B	A B	A	A
С	С	D	С	С	С	С	С	D	С	A	С	С	D	D	С	С	A	A
D	С	D	С	D	D	D	С	D	С	Α	С	С	D	D	С	С	Α	Α
D	D	D	D	D	D	D	С	D	С	С	D	D	D	D	С	С	С	С
																	ı	
													60	OC	600	/2	600	C/3
n.zı		n.z		n.z		n.zı		n.z		n.zutr.	n.z		n.z		n.zı		n.z	
n.zı n.zı		n.z n.z		n.z	utr. utr.	n.zı n.zı		n.zı n.zı		n.zutr. n.zutr.	n.z n.z		n.z n.z		n.zu n.zu		n.z	utr. utr.
n.zı		n.z			utr.	n.zı		n.zi		n.zutr.		utr.		utr.	n.zı		n.z	
n.zı	utr.	n.z	utr.	n.z	utr.	n.zı	utr.	n.zı	utr.	n.zutr.	n.z	utr.	n.z	utr.	n.zı	ıtr.	n.z	utr.
n.zı	utr.	n.z		n.z		n.zı		n.z		n.zutr.	n.z		n.z		n.zı			utr.
n.zı		n.z		n.z		n.zı		n.z		n.zutr.	n.z		n.z		n.zı		n.z	
n.zı n.zı		n.z n.z		n.z n.z		n.zı n.zı		n.zı n.zı		n.zutr. n.zutr.	n.z n.z		n.z n.z		n.zu n.zu		n.z n.z	
														oc	600			C/3
6			5		5	5		5		50		5		i0	50			0
5:			i3 K		'5 K	4		5	6 C	133		4 C		'7 C	7:			7
<u> </u>			K		K	3		3		×		ς		K	, , , , , , , , , , , , , , , , , , ,			C
<u> </u>			K		K	3			ζ	×		C		K	3			C
6!			5		17	6			8	145		6		19	30			C
10	13	10	03	13	25	9	8	10)6	183	10	34	12	27	34	;	3	C
10	13	10	03	13	25	9	8	10)6	183	10	34	12	27	12	7	12	27
17			78		00	14		18		258		09		02	20			02
15	50	15	50	21	50	13:	30	11	UO .	2300	13	50	12	250	125	υÜ	12	50

TABELLE MIT TECHNISCHEN DATEN

	V			DUCOWALL ACOUSTIC									
				7	ustic 5 Z S. 28	Acou 75 siehe	iL	Acou 19			ustic 00		
→ Lüftu	ngswer	te		siehe	J. ZŎ	siene	J. 20	siehe	J. 27	siehe	J. 27		
	Merkmal		Einheit	STND	+OPT	STND	+OPT	STND	+OPT	STND	+OPT		
Viewellen freien l			0/								74		
Visueller freier I Physischer freie			%	76 28	76 28	95 28	95 28	74 35	74 35	74 35	35		
-	-Faktor Zuluft (je niedriger, je besser)		70	26,03	26,03	22,25	22,89	11,04	11,49	13,52	16,00		
	-Faktor Abluft (je niedriger, je besser)			29,86	30,19	15,02	15,50	10,96	11,41	13,52	16,00		
Ce (je höher, je bes	sser)			0,196	0,196	0,212	0,209	0,301	0,295	0,272	0,250		
Cd (je höher, je bes	sser)			0,183	0,182	0,258	0,254	0,302	0,296	0,272	0,250		
→ Wass		isung											
	Merkmal		Einheit	STND	+0PT	STND	+0PT	STND	+0PT	STND	+0PT		
Wasserdichtigke	it bei v = 0 m/s		Klasse	В	В	В	В	В	В	A	A		
Wasserdichtigke	it bei v = 0,5 m/	/s	Klasse	В	В	В	В	С	С	В	В		
Wasserdichtigke	it bei v = 1,0 m/	/s	Klasse	С	С	С	С	С	С	В	В		
Wasserdichtigke			Klasse	С	С	D	D	С	С	С	С		
Wasserdichtigke Wasserdichtigke			Klasse Klasse	D D	D D	D D	D D	D D	D D	C D	C D		
→ Akust		/erte											
			dВ		4	۸		1	1	1	7		
С			dB		6	<i>6</i>		1			7		
C C _{tr}			dB						1	-			
		bei 125 Hz	dB	- 2) 1 ,7	-: 2,	2	- - 4	1 2 8	- 7	1 3 8		
C _{tr}		bei 125 Hz bei 250 Hz	dB dB	2) 1 ,7 ,5	2,	1 2 6		1 2 8	7	1 3 8 8		
C _{tr}		bei 125 Hz bei 250 Hz bei 500 Hz	dB dB	2 3 3 2	1 ,7 ,5	2, 3	2 6 8	- - 4 4	1 2 8 4	77	1 3 8 8 3		
C _{tr}		bei 125 Hz bei 250 Hz bei 500 Hz bei 1000 Hz	dB dB dB	2 3 2 4	0 1 ,7 ,5 ,1	2, 3 1,	2 6 8 9	- - 4 - 7	1 2 8 4 4 .4	- 7 1 12	1 3 8 8 3 .,9		
C _{tr}		bei 125 Hz bei 250 Hz bei 500 Hz	dB dB	2 3 2 4	1 ,7 ,5	2, 3	2 6 6 9 4	- - 4 4 7 7 11	1 2 8 4 4 .4	77 11 11 11 11 11 11 11 11 11 11 11 11 1	1 3 8 8 3		
C _{tr} Oktavbandwerte	profile (bei 125 Hz bei 250 Hz bei 500 Hz bei 1000 Hz bei 2000 Hz	dB dB dB dB dB	2 3 2 4	1 1,7 ,5 ,1 ,8 ,1	2, 3 1, 4,	2 6 6 9 4	- - 4 4 7 7 11	1 2 8 4 4 .,4	77 11 11 11 11 11 11 11 11 11 11 11 11 1	1 3 8 8 3 .,9 ,8 ,7		
c _{tr} Oktavbandwerte → Halte	profile (bei 125 Hz bei 250 Hz bei 500 Hz bei 1000 Hz bei 2000 Hz bei 4000 Hz	dB dB dB dB dB	2 3 3 2 4 10	0 1 1,7 5,5 1,1 8 0,1 2,4	2, 3 1, 4, 9,	2 6 8 9 4 7 7.5	- - 4 4 7 7 11 12	1 2 8 4 4 .4 .4 .4 .3		1 3 8 8 3 .9 .8 .7		
C _{tr} Oktavbandwerte	profile (bei 125 Hz bei 250 Hz bei 500 Hz bei 1000 Hz bei 2000 Hz bei 4000 Hz	dB dB dB dB dB	2 2 3 3 2 2 4 4 110 11:	1 1,7 ,5 ,1 ,8	2, 3 1, 4,	2 6 8 9 4 7 7,5	- - 4 4 7 7 11	1 2 8 4 4 .4 .4 .4 .3 3		1 3 8 8 3 .,9 ,8 ,7		
C _{tr} Oktavbandwerte → Halte Lamellenschritt	profile (bei 125 Hz bei 250 Hz bei 500 Hz bei 1000 Hz bei 2000 Hz bei 4000 Hz	dB dB dB dB dB	2 2 3 2 4 10 11:	0 1 ,7 ,5 ,1 ,8 0,1 2,4	2, 3 1, 4, 9,	9 4 7 7,5	- - 4 4 7 7 11 12 1	1 2 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		1 3 8 8 3 .9 .8 .7 .7 .4		
C _{tr} Oktavbandwerte → Halte Lamellenschritt	profile (Merkmal	bei 125 Hz bei 250 Hz bei 500 Hz bei 1000 Hz bei 2000 Hz bei 4000 Hz	dB dB dB dB dB mm mm	2 3 3 2 4 110 11:	0 1 ,7 ,5 ,1 ,8 0,1 2,4	2, 3 1, 4, 9, 11	2 6 8 9 4 7 7.5	- - 4 4 7 7 111 12 1	1 2 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		1 3 8 8 3 .,9 4,8 7,7 .,4		
C _{tr} Oktavbandwerte → Halte Lamellenschritt	profile (bei 125 Hz bei 250 Hz bei 500 Hz bei 1000 Hz bei 2000 Hz bei 4000 Hz	dB dB dB dB dB mm mm mm	2 2 3 2 4 11 12	0 1 1,7 5,5 1,1 8 0,1 2,4	2, 3 1, 4, 9, 11	2 6 8 9 4 7 .5	- - 4 4 7 7 111 12 1	1 2 8 8 4 4 444		1 3 8 8 3,9,8,7,4		
C _{tr} Oktavbandwerte Halte Lamellenschritt Tiefe der Lamell Gesamtein- bautiefe im	profile (Merkmal	bei 125 Hz bei 250 Hz bei 500 Hz bei 1000 Hz bei 2000 Hz bei 4000 Hz bei 4000 Hz	dB dB dB dB dB mm mm mm mm	2 2 3 3 2 2 4 11 11 11 11 11 11 11 11 11 11 11 11 1	0 1 1,7 5,5 1,1 8 8,0,1 2,4	2, 3 1, 4, 9, 11	2 6 6 8 9 4 7 7 .5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	- 4 4 7 7 111 12 1	1 2 8 8 4 4 444		1 3 8 8 3 -,9 ,8 -,7 -,4		
C _{tr} Oktavbandwerte Halte Lamellenschritt Tiefe der Lamell	profile (Merkmal e Solid Screening	bei 125 Hz bei 250 Hz bei 500 Hz bei 500 Hz bei 1000 Hz bei 4000 Hz und Maße 40/21 (doppelt) 40/70 doppelt 40/100 Doppel 50/12 21/50 MULTI	dB dB dB dB dB mm mm mm mm mm	2 2 3 3 2 2 4 11 11 11 11 11 11 11 11 11 11 11 11 1	0 1 1,7 5,5 1,1 8 1,1 2,4	60 61 61 62 63 64 75 88 88	0 0 5 5 6 7 7 7 7 7		1 2 8 8 4 4 444	11: 12: 12: 13: 14: 15: 16: 17: 18: 18: 18: 18: 18: 18: 18: 18: 18: 18	1 3 8 8 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		
C _{tr} Oktavbandwerte Halte Lamellenschritt Tiefe der Lamell Gesamtein- bautiefe im	profile u Merkmal e Solid Screening	bei 125 Hz bei 250 Hz bei 500 Hz bei 500 Hz bei 1000 Hz bei 2000 Hz bei 4000 Hz 40/21 (doppelt) 40/70 doppelt 40/100 Doppel 50/12 21/50 MULTI 50/50	dB dB dB dB dB mm mm mm mm mm	2 2 3 3 2 4 11 11:	0 1 1,7 5,5 1,1 8,8 0,1 2,4	60 61 61 71 88 81 12	0 0 0 5 5 6 6 7 7 7 7		1 2 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	11: 12: 12: 13: 14: 15: 16: 17: 18: 18: 18: 18: 18: 18: 18: 18: 18: 18	1 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
C _{tr} Oktavbandwerte Halte Lamellenschritt Tiefe der Lamell Gesamtein- bautiefe im Halteprofil	profile users with the second of the second	bei 125 Hz bei 250 Hz bei 500 Hz bei 500 Hz bei 1000 Hz bei 4000 Hz und Maße 40/21 (doppelt) 40/70 doppelt 40/100 Doppel 50/12 21/50 MULTI	dB dB dB dB dB dB mm mm mm mm mm mm	2 3 3 2 4 11 11:	0 1 1,7 5,5 1,1 8,8 0,1 2,4	60 61 61 62 63 64 75 88 88	0 6 8 9 4 7 7,5		1 2 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	11: 11: 12: 12: 13: 14: 14: 14: 15: 16: 17: 18: 18: 18: 18: 18: 18: 18: 18: 18: 18	1 3 8 8 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		

STND- und +OPT-Version: siehe Seite 5

DUCOWALL SCREENING

Screening 35

siehe S. 12

Screening 70

siehe S. 13

Schritt 75 Schritt		tt 112	Schritt 150		Schritt 75		Schritt 112		Schritt 150		
STND	+0PT	STND	+0PT	STND	+OPT	STND	+0PT	STND	+0PT	STND	+0PT
52	52	68	68	76	76	53	53	68	68	77	77
29	29	27	27	35	35	37	37	59	59	55	55
61,04	61,04	67,19	68,30	23,56	24,03	30,19	30,52	22,25	22,25	13,72	14,35
38,10	38,58	33,03	32,65	19,93	20,29	25,00	25,77	13,72	14,13	10,21	10,54
0,128	0,128	0,122	0,121	0,206	0,204	0,182	0,181	0,212	0,212	0,270	0,264
0,162	0,161	0,174	0,175	0,224	0,222	0,200	0,197	0,270	0,266	0,313	0,308

Schr	itt 75	Schri	tt 112	Schri	Schritt 150		Schritt 75		Schritt 112		tt 150
STND	+OPT	STND	+OPT	STND	+0PT	STND	+OPT	STND	+0PT	STND	+0PT
Α	Α	В	В	С	С	В	Α	В	В	С	С
В	В	С	В	С	С	С	В	С	В	D	С
В	В	С	С	D	D	С	С	С	С	D	D
D	D	D	D	D	D	С	С	С	С	D	D
D	D	D	D	D	D	D	D	D	С	D	D
D	D	D	D	D	D	D	D	D	D	D	D

Schritt 112	Schritt 150	Schritt 75	Schritt 112	Schritt 150
n.zutr.	n.zutr.	n.zutr.	n.zutr.	n.zutr.
n.zutr.	n.zutr.	n.zutr.	n.zutr.	n.zutr.
n.zutr.	n.zutr.	n.zutr.	n.zutr.	n.zutr.
n.zutr.	n.zutr.	n.zutr.	n.zutr.	n.zutr.
n.zutr.	n.zutr.	n.zutr.	n.zutr.	n.zutr.
n.zutr.	n.zutr.	n.zutr.	n.zutr.	n.zutr.
n.zutr.	n.zutr.	n.zutr.	n.zutr.	n.zutr.
n.zutr.	n.zutr.	n.zutr.	n.zutr.	n.zutr.
n.zutr.	n.zutr.	n.zutr.	n.zutr.	n.zutr.
	n.zutr. n.zutr. n.zutr. n.zutr. n.zutr. n.zutr. n.zutr. n.zutr. n.zutr.	n.zutr. n.zutr. n.zutr. n.zutr.	n.zutr. n.zutr. n.zutr. n.zutr. n.zutr. n.zutr.	n.zutr. n.zutr. n.zutr. n.zutr. n.zutr. n.zutr. n.zutr. n.zutr.

Schritt 75	Schritt 112	Schritt 150	Schritt 75	Schritt 112	Schritt 150		
75	112	150	75	112	150		
43	43	43	82	82	82		
57	57	57	94,5	94,5	94,5		
107	107	107	145	145	145		
137	137	137	175	175	175		
	×			х			
	30		×				
	x		×				
	x			x			
	2000		2400	2400	2400		

